Práctica 3.
UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO
COLEGIO DE CIENCIAS Y HUMANIDADES
PLANTEL SUR
BIOLOGÍA IV
PRÁCTICA 3
Consumo de oxígeno durante la respiración de semillas de frijol y lombrices
INTEGRANTES DEL EQUIPO:
ALCÁNTAR HERNÁNDEZ WENDY
GARCÍA ANTONIO BRENDA JAQUELINE
GONZÁLEZ AHUMADA ALEXA
ZÚÑIGA CERVERA CATHERINE ANDREA
GRUPO: 623
PROFESORA: MARÍA EUGENIA TOVAR
Consumo de oxígeno durante la respiración de semillas de frijol y lombrices
Preguntas generadoras:
1. ¿Las plantas respiran?
Sí, ya que son seres vivos y todos los seres vivos respiran.
2. ¿La respiración en las plantas es similar a la que realizan los animales?
Las plantas realizan únicamente el proceso de la respiración en las estomas, mientras que los animales presentan distintos mecanismos de respiración.
3. ¿Qué partes de las plantas respiran?
Las plantas tienen minúsculos poros en las superficies de sus hojas, llamado estomas.
Introducción
La captación de oxígeno del medio es un proceso imprescindible para la respiración, las moléculas de este elemento que entran al cuerpo de los organismos son movilizadas hasta las células donde participan en el desdoblamiento de moléculas orgánicas para liberar energía. Todos los seres vivos requieren de esta energía para realizar sus actividades, por tanto todos necesitan consumir oxígeno para obtenerla.
En el laboratorio el consumo de oxígeno durante la respiración puede medirse empleando un dispositivo llamado respirómetro. En este dispositivo, los cambios de presión causados por el consumo de oxígeno pueden ser indicados por el movimiento de un colorante colocado en un tubo capilar que se conecta directamente al respirómetro el cual contendrá organismos vivos. El líquido en el tubo capilar se moverá acercándose o alejándose del respirómetro como una respuesta al cambio en el volumen de lo gases dentro de él.
Material:
3 matraces Erlenmeyer de 250 ml
3 trozos de tubo de vidrio doblado en un ángulo de 90° (en forma de L)
3 tapones para matraz del No. 6 con una perforación del tamaño del tubo de vidrio
1 pipeta Pasteur
1 regla milimétrica de plástico
1 pinzas de disección
1 probeta de 50 ml
1 gasa
1 paquete de algodón chico
Cera de Campeche
1 hoja blanca
Diurex
Hilo
Material biológico:
Semillas germinadas de frijol
10 lombrices de tierra
Sustancias:
Solución de rojo congo al 1%
200 ml de NaOH 0.25 N
Procedimiento:
A) Para medir el consumo de oxígeno en la respiración de las semillas de fríjol:
Cinco días antes de la actividad experimental coloca 50 semillas de fríjol a remojar durante toda una noche, desecha el agua y colócalas sobre una toalla de papel húmedo. Mantenlas en un lugar fresco y con luz.
Pesa dos porciones de 30 gramos de semillas de fríjol germinadas. Coloca una de estas porciones en un vaso de precipitados de 400 ml. y ponla a hervir durante 5 minutos en una parrilla con agitador magnético. Después de este tiempo retira las semillas del agua y déjalas que se enfríen.
Toma los tapones de hule perforados y con cuidado introduce en estas perforaciones los tubos de vidrio en forma de L. Utiliza jabón o aceite para que sea más fácil el desplazamiento de los tubos, sosteniendo el tubo lo más cerca al tapón.
Toma dos matraces Erlenmeyer de 250 ml y coloca en el fondo de cada uno, una base de algodón que tendrás que humedecer con 20 ml de NaOH 0.25 N. Después coloca sobre esta capa humedecida otra capa algodón de aproximadamente 3 cm de espesor y agrega en cada matraz las porciones de semillas que pesaste anteriormente. Tapa rápidamente los matraces con los tapones de hule que tienen insertados los tubos de vidrio, para evitar que haya fugas coloca alrededor del tapón cera de Campeche. Al matraz que contenga la porción de semillas hervidas rotúlalo con la leyenda “control”.
NOTA: Evita que las semillas tengan contacto con la solución de NaOH, esta sustancia absorberá el CO2 que produzcan las semillas durante la respiración. Los cambios de presión que se den en el interior del matraz serán ocasionados por el oxígeno que se está consumiendo.
En un pedazo de hoja blanca marca una longitud de 15 cms, centímetro a centímetro. Recórtala y pégala sobre la parte libre del tubo de vidrio (deberás hacer esto para los dos matraces). Observa en el esquema como debe quedar montado el respirómetro.
Con la pipeta Pasteur coloca con cuidado una gota de rojo congo en el extremo de la parte libre del tubo de vidrio en forma de L. Espera dos minutos y observa el desplazamiento de la gota del colorante a través del tubo de vidrio, con la graduación que pegaste en él podrás medir este desplazamiento.
Utiliza una tabla como la siguiente para registrar tus datos:
Tiempo (min)
|
Desplazamiento (cm)
|
2
|
1.5
|
4
|
.8
|
6
|
1.1
|
8
|
1.2
|
10
|
.9
|
12
|
3
|
14
|
1
|
16
|
.7
|
18
|
.7
|
20
|
1
|
B) Para medir el consumo de oxígeno en la respiración de las lombrices.
Coloca las lombrices dentro de un matraz Erlenmeyer de 250 ml.
Humedece un pedazo de algodón con NaOH 0.25 N, envuélvelo en una gasa ajustándolo ligeramente con hilo dejando un pedazo de aproximadamente 10 cm.
Prepara el tapón para matraz con el tubo de vidrio en forma de L como se explicó anteriormente. Mete el algodón con NaOH y suspéndelo del pedazo de hilo, evita que el algodón tenga contacto con las lombrices. Sujeta el algodón con el hilo y coloca rápidamente el tapón. Sella con cera de Campeche para evitar posibles fugas (observa el esquema).
En un pedazo de hoja blanca marca una longitud de 15 cm , centímetro a centímetro. Recórtala y pégala sobre la parte libre del tubo de vidrio. En el extremo de esta parte coloca con la pipeta Pasteur 1 o 2 gotas de rojo congo, espera dos minutos y registra el avance del colorante a través del tubo de vidrio en intervalos de 5 min durante 1 hora. Anota tus datos en la siguiente tabla:
Tiempo (min)
| |
2
|
14
|
4
|
9.8
|
6
|
16
|
Resultados:
Análisis de resultados:
Discute con tu equipo las siguientes preguntas y anota para cada una la conclusión a la que llegaron.
¿Para qué se pusieron a germinar las semillas antes de la práctica?
Para que las semillas estuvieran en pleno crecimiento y así observar que consumen más oxígeno, que una planta ya desarrollada, debido a la demanda de energía que necesitan
¿Por qué crees que deban estar muertas las semillas que colocaste en el respirómetro control?
Para tener un punto de partida para comparar la respiración entre plantas y animales. Como ambas están compuestas de células, las células del control deberían estar muertas para hacer notar que las células ya no realizaban la respiración.
¿Hacia dónde se mueve la gota del colorante? ¿Por qué crees que lo haga en ese sentido? ¿Bajo que circunstancias podrá moverse en sentido contrario?
Hacia la dirección en dónde se encontraban las plantas y las lombrices debido a que estaban consumiendo oxígeno, y podrían moverse en sentido contrario, solo si las plantas y los animales desecharan gases y no consumieran oxígeno
¿Por qué crees que transcurra más tiempo en desplazarse la gota de colorante en el respirómetro que contiene las lombrices?
Porque ellas no tienen tanta demanda de oxígeno como las semillas
¿Cómo puedes saber que realmente el oxígeno consumido alteró la presión dentro del respirómetro?
Porque de haber sido expulsado solo el CO2 la gota hubiera salido
¿Las plantas y los animales consumen el mismo gas durante la respiración?
Si porque necesitan llevar oxígeno a todas las células. sin embargo, las semillas que usamos en esta ocasión, consumieron mucho más oxígeno porque estaban en desarrollo y era una cantidad mayor.
¿La respiración de plantas y animales es semejante?
Si, ambos consumen oxígeno, y lo utilizamos para la transformación de la energía del alimento en ATP
Caracteriza los siguientes conceptos:
Oxígeno El oxígeno es el elemento químico de número atómico 8 que constituye cerca de la quinta parte del aire atmosférico terrestre en su forma molecular O2. En esta forma molecular que está compuesta por dos átomos de este elemento, el oxígeno es un gas.
Degradación de glucosa Glucólisis quiere decir "quiebre" o rompimiento (lisis) de la glucosa. Es la ruta bioquímica principal para la descomposición de la glucosa en sus componentes más simples dentro de las células del organismo. La glucólisis se caracteriza porque, si está disponible, puede utilizar oxígeno (ruta aerobia) o, si es necesario, puede continuar en ausencia de éste (ruta anaerobia), aunque a costa de producir menos energía. Tiene lugar en una serie de nueve reacciones catalizadas, cada una, por una enzima específica, donde se desmiembra el esqueleto de carbonos y sus pasos se reordenan paso a paso. En los primeros pasos se requiere del aporte de energía abastecido por el acoplamiento con el sistema ATP — ADP. Esta serie de reacciones se realizan en casi todas las células vivientes, desde las procariotas (células sin núcleo) hasta las eucariotas (células con núcleo) de nuestro cuerpo.
Hidróxido de sodio. A temperatura ambiente, el hidróxido de sodio es un sólido blanco cristalino sin olor que absorbe humedad del aire. Es una sustancia manufacturada. Cuando se disuelve en agua o se neutraliza con un ácido libera una gran cantidad de calor que puede ser suficiente como para encender materiales combustibles. El hidróxido de sodio es muy corrosivo. Generalmente se usa en forma sólida o como una solución de 50%.
Bibliografía:
-Tovar, M. (2006) Programa de Biología III. México. pp. 65 - 68.
Comments
Post a Comment